旅行商问题算法
❶ 一段关于旅行商问题的代码,可否解释下算法思想,及 swap 函数的作用
=151456456847
❷ 想用动态规划算法解决旅行商(TSP)问题,麻烦指点下方法和思路,详细点,谢谢1
http://hi..com/__%D2%E5__/blog/item/d6326f1fcbdb4eff1ad576d8.html
http://liouwei20051000285.blog.163.com/blog/static/25236742009112242726527/
以上都是动态规划解决TSP问题的,但是个人觉得不是太好,建议你去了解一下遗传算法,很容易懂,网上有很详细的讲解。希望你学到知识
❸ java人工蜂群算法求解TSP问题
一、人工蜂群算法的介绍
人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。
二、人工蜂群算法的原理
1、原理
标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。
假设问题的解空间是。
代码:
[cpp]view plain
#include<iostream>
#include<time.h>
#include<stdlib.h>
#include<cmath>
#include<fstream>
#include<iomanip>
usingnamespacestd;
constintNP=40;//种群的规模,采蜜蜂+观察蜂
constintFoodNumber=NP/2;//食物的数量,为采蜜蜂的数量
constintlimit=20;//限度,超过这个限度没有更新采蜜蜂变成侦查蜂
constintmaxCycle=10000;//停止条件
/*****函数的特定参数*****/
constintD=2;//函数的参数个数
constdoublelb=-100;//函数的下界
constdoubleub=100;//函数的上界
doubleresult[maxCycle]={0};
/*****种群的定义****/
structBeeGroup
{
doublecode[D];//函数的维数
doubletrueFit;//记录真实的最小值
doublefitness;
doublerfitness;//相对适应值比例
inttrail;//表示实验的次数,用于与limit作比较
}Bee[FoodNumber];
BeeGroupNectarSource[FoodNumber];//蜜源,注意:一切的修改都是针对蜜源而言的
BeeGroupEmployedBee[FoodNumber];//采蜜蜂
BeeGroupOnLooker[FoodNumber];//观察蜂
BeeGroupBestSource;//记录最好蜜源
/*****函数的声明*****/
doublerandom(double,double);//产生区间上的随机数
voidinitilize();//初始化参数
doublecalculationTruefit(BeeGroup);//计算真实的函数值
doublecalculationFitness(double);//计算适应值
voidCalculateProbabilities();//计算轮盘赌的概率
voidevalueSource();//评价蜜源
voidsendEmployedBees();
voidsendOnlookerBees();
voidsendScoutBees();
voidMemorizeBestSource();
/*******主函数*******/
intmain()
{
ofstreamoutput;
output.open("dataABC.txt");
srand((unsigned)time(NULL));
initilize();//初始化
MemorizeBestSource();//保存最好的蜜源
//主要的循环
intgen=0;
while(gen<maxCycle)
{
sendEmployedBees();
CalculateProbabilities();
sendOnlookerBees();
MemorizeBestSource();
sendScoutBees();
MemorizeBestSource();
output<<setprecision(30)<<BestSource.trueFit<<endl;
gen++;
}
output.close();
cout<<"运行结束!!"<<endl;
return0;
}
/*****函数的实现****/
doublerandom(doublestart,doubleend)//随机产生区间内的随机数
{
returnstart+(end-start)*rand()/(RAND_MAX+1.0);
}
voidinitilize()//初始化参数
{
inti,j;
for(i=0;i<FoodNumber;i++)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=random(lb,ub);
EmployedBee[i].code[j]=NectarSource[i].code[j];
OnLooker[i].code[j]=NectarSource[i].code[j];
BestSource.code[j]=NectarSource[0].code[j];
}
/****蜜源的初始化*****/
NectarSource[i].trueFit=calculationTruefit(NectarSource[i]);
NectarSource[i].fitness=calculationFitness(NectarSource[i].trueFit);
NectarSource[i].rfitness=0;
NectarSource[i].trail=0;
/****采蜜蜂的初始化*****/
EmployedBee[i].trueFit=NectarSource[i].trueFit;
EmployedBee[i].fitness=NectarSource[i].fitness;
EmployedBee[i].rfitness=NectarSource[i].rfitness;
EmployedBee[i].trail=NectarSource[i].trail;
/****观察蜂的初始化****/
OnLooker[i].trueFit=NectarSource[i].trueFit;
OnLooker[i].fitness=NectarSource[i].fitness;
OnLooker[i].rfitness=NectarSource[i].rfitness;
OnLooker[i].trail=NectarSource[i].trail;
}
/*****最优蜜源的初始化*****/
BestSource.trueFit=NectarSource[0].trueFit;
BestSource.fitness=NectarSource[0].fitness;
BestSource.rfitness=NectarSource[0].rfitness;
BestSource.trail=NectarSource[0].trail;
}
doublecalculationTruefit(BeeGroupbee)//计算真实的函数值
{
doubletruefit=0;
/******测试函数1******/
truefit=0.5+(sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))-0.5)
/((1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*(1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1])));
returntruefit;
}
doublecalculationFitness(doubletruefit)//计算适应值
{
doublefitnessResult=0;
if(truefit>=0)
{
fitnessResult=1/(truefit+1);
}else
{
fitnessResult=1+abs(truefit);
}
returnfitnessResult;
}
voidsendEmployedBees()//修改采蜜蜂的函数
{
inti,j,k;
intparam2change;//需要改变的维数
doubleRij;//[-1,1]之间的随机数
for(i=0;i<FoodNumber;i++)
{
param2change=(int)random(0,D);//随机选取需要改变的维数
/******选取不等于i的k********/
while(1)
{
k=(int)random(0,FoodNumber);
if(k!=i)
{
break;
}
}
for(j=0;j<D;j++)
{
EmployedBee[i].code[j]=NectarSource[i].code[j];
}
/*******采蜜蜂去更新信息*******/
Rij=random(-1,1);
EmployedBee[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);
/*******判断是否越界********/
if(EmployedBee[i].code[param2change]>ub)
{
EmployedBee[i].code[param2change]=ub;
}
if(EmployedBee[i].code[param2change]<lb)
{
EmployedBee[i].code[param2change]=lb;
}
EmployedBee[i].trueFit=calculationTruefit(EmployedBee[i]);
EmployedBee[i].fitness=calculationFitness(EmployedBee[i].trueFit);
/******贪婪选择策略*******/
if(EmployedBee[i].trueFit<NectarSource[i].trueFit)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=EmployedBee[i].code[j];
}
NectarSource[i].trail=0;
NectarSource[i].trueFit=EmployedBee[i].trueFit;
NectarSource[i].fitness=EmployedBee[i].fitness;
}else
{
NectarSource[i].trail++;
}
}
}
voidCalculateProbabilities()//计算轮盘赌的选择概率
{
inti;
doublemaxfit;
maxfit=NectarSource[0].fitness;
for(i=1;i<FoodNumber;i++)
{
if(NectarSource[i].fitness>maxfit)
maxfit=NectarSource[i].fitness;
}
for(i=0;i<FoodNumber;i++)
{
NectarSource[i].rfitness=(0.9*(NectarSource[i].fitness/maxfit))+0.1;
}
}
voidsendOnlookerBees()//采蜜蜂与观察蜂交流信息,观察蜂更改信息
{
inti,j,t,k;
doubleR_choosed;//被选中的概率
intparam2change;//需要被改变的维数
doubleRij;//[-1,1]之间的随机数
i=0;
t=0;
while(t<FoodNumber)
{
R_choosed=random(0,1);
if(R_choosed<NectarSource[i].rfitness)//根据被选择的概率选择
{
t++;
param2change=(int)random(0,D);
/******选取不等于i的k********/
while(1)
{
k=(int)random(0,FoodNumber);
if(k!=i)
{
break;
}
}
for(j=0;j<D;j++)
{
OnLooker[i].code[j]=NectarSource[i].code[j];
}
/****更新******/
Rij=random(-1,1);
OnLooker[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);
/*******判断是否越界*******/
if(OnLooker[i].code[param2change]<lb)
{
OnLooker[i].code[param2change]=lb;
}
if(OnLooker[i].code[param2change]>ub)
{
OnLooker[i].code[param2change]=ub;
}
OnLooker[i].trueFit=calculationTruefit(OnLooker[i]);
OnLooker[i].fitness=calculationFitness(OnLooker[i].trueFit);
/****贪婪选择策略******/
if(OnLooker[i].trueFit<NectarSource[i].trueFit)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=OnLooker[i].code[j];
}
NectarSource[i].trail=0;
NectarSource[i].trueFit=OnLooker[i].trueFit;
NectarSource[i].fitness=OnLooker[i].fitness;
}else
{
NectarSource[i].trail++;
}
}
i++;
if(i==FoodNumber)
{
i=0;
}
}
}
❹ 旅行商问题在算法上与什么问题相似
额,TSP问题可以用很多智能算法,我再给你找找相关文献吧,作为回报 迄今为止,这类问题中没有一个找到有效算法。 倾向于接受NP完全问题(NP-Complet或NPC)和NP难题(NP-Hard或NPH)不存在有效算法这一猜想,认为这类问题的大型实例不能用精确算
❺ 对于大规模TSP问题,为什么遍历算法不可行而贪心算法可行
TSP属于NPC问题,一般只能靠近似算法求出近似解,问题规模小的时候,可以内直接穷举问题空间,得出容最优解,不过问题规模一大就不行了,问题空间是指数暴涨的,这时候只能退而求其次,求近似最优解,而对应的近似算法中会大量使用贪心策略,所以其实不是可不可行的问题,贪心牺牲了 解的精度(求得的不一定是最优解),但换来了时间上可观的节约(直接降到多项式)。
❻ C++算法,动态规划法实现TSP问题
c++listmatrixiteratoriostream算法
[cpp] view plainprint?
#include
#include
using namespace std ;
typedef list<</SPAN>int> LISTINT;
LISTINT listAnother;
LISTINT list_result;
int d[4][4]={{-1,3,6,7},{2,-1,8,6},{7,3,-1,5,},{7,3,7,-1}}; //路径权值
int matrix_length=4;
int getPath(int n,LISTINT list_org)
{
LISTINT::iterator i;
int minValue;
if(n==1)
{
i=list_org.begin();
minValue= d[*i-1][0];
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
}
else
{
int temp;
i=list_org.begin();
temp=*i;
list_org.erase(i);
i=list_org.begin();
minValue=d[temp-1][*(i)-1]+getPath(n-1,list_org);
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
for(int j=2;j
{
i=list_org.begin();
for(int k=1;k
{
i++;
}
int tempvalue=*i;
list_org.erase(i);
list_org.push_front(tempvalue);
i=list_org.begin();
tempvalue=d[temp-1][*(i)-1]+getPath(n-1,list_org);
if(tempvalue
{
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
minValue=tempvalue;
}
}
}
return minValue;
}
int main(int argc, char* argv[])
{
LISTINT list_org;
LISTINT::iterator h;
list_org.push_front(4);
list_org.push_front(3);
list_org.push_front(2);
list_org.push_front(1);
cout<<"旅行商问题动态规划算法"<<endl;
cout<<"路线长度的矩阵表示如下 (-1表示无限大)"<<endl;
for(int j=0;j
cout<<endl;
for(int k=0;k
cout<<" "<<d[j][k];
}
}
cout<<endl;
cout<<"计算结果:"<<getPath(4,list_org)<<endl;
list_result.push_front(1);
list_result.push_back(1);
cout<<"要走的路径:---->:";
for (h = list_result.begin(); h != list_result.end(); ++h)
cout << *h << " ";
cout << endl;
int i;
cin>>i;
return 0;
}
❼ 假设哈密顿问题是NPC,证明:TSP(旅行商问题)属于NP-hard问题(现代优化计算方法 邢文旬主编 P50第11题)
首先HC是一个npc问题且是一个搜索问题,假设使用贪心策略的算法A(·)可解HC得到一条哈密顿回路。
再利用无向图G构造tsp的图G',图G中存在的边权值设为1,图G中不存在的边权值设为X(X>1的整数)。
这样得到的一个TSP问题可使用算法A(·)来解。
图灵规约条件:(1)问题1,问题2都是搜索问题;
(2)求解问题1的算法A(·)可求解问题2;
(3)算法A(问题1)时间复杂度是多项式时间,则算法A(问题2)也是多项式时间;
所以HC可以图灵规约到这样一个TSP问题实例。
又因为HC是NPC类问题,可以图灵规约到TSP,所以TSP是NP-hard问题